|
Rock magnetism is the study of the magnetic properties of rocks, sediments and soils. The field arose out of the need in paleomagnetism to understand how rocks record the Earth's magnetic field. This remanence is carried by minerals, particularly certain strongly magnetic minerals like magnetite (the main source of magnetism in lodestone). An understanding of remanence helps paleomagnetists to develop methods for measuring the ancient magnetic field and correct for effects like sediment compaction and metamorphism. Rock magnetic methods are used to get a more detailed picture of the source of distinctive striped pattern in marine magnetic anomalies that provides important information on plate tectonics. They are also used to interpret terrestrial magnetic anomalies in magnetic surveys as well as the strong crustal magnetism on Mars. Strongly magnetic minerals have properties that depend on the size, shape, defect structure and concentration of the minerals in a rock. Rock magnetism provides non-destructive methods for analyzing these minerals such as magnetic hysteresis measurements, temperature-dependent remanence measurements, Mössbauer spectroscopy, ferromagnetic resonance and so on. With such methods, rock magnetists can measure the effects of past climate change and human impacts on the mineralogy (see environmental magnetism). In sediments, a lot of the magnetic remanence is carried by minerals that were created by magnetotactic bacteria, so rock magnetists have made significant contributions to biomagnetism. == History == Until the 20th century, the study of the Earth's field (geomagnetism and paleomagnetism) and of magnetic materials (especially ferromagnetism) developed separately. Rock magnetism had its start when scientists brought these two fields together in the laboratory. Koenigsberger (1938), Thellier (1938) and Nagata (1943) investigated the origin of remanence in igneous rocks.〔 By heating rocks and archeological materials to high temperatures in a magnetic field, they gave the materials a thermoremanent magnetization (TRM), and they investigated the properties of this magnetization. Thellier developed a series of conditions (the Thellier laws) that, if fulfilled, would allow the determination of the intensity of the ancient magnetic field to be determined using the Thellier-Thellier method. In 1949, Louis Néel developed a theory that explained these observations, showed that the Thellier laws were satisfied by certain kinds of single-domain magnets, and introduced the concept of blocking of TRM. When paleomagnetic work in the 1950s lent support to the theory of continental drift, skeptics were quick to question whether rocks could carry a stable remanence for geological ages. 〔For example, Sir Harold Jeffreys, in his influential textbook ''The Earth'', had the following to say about it: 〕 Rock magnetists were able to show that rocks could have more than one component of remanence, some soft (easily removed) and some very stable. To get at the stable part, they took to "cleaning" samples by heating them or exposing them to an alternating field. However, later events, particularly the recognition that many North American rocks had been pervasively remagnetized in the Paleozoic, showed that a single cleaning step was inadequate, and paleomagnetists began to routinely use stepwise demagnetization to strip away the remanence in small bits. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Rock magnetism」の詳細全文を読む スポンサード リンク
|